Emai:marketing@videisimo.net
业务咨询专线:400-780-8018
Tel: +1(626)986-9880(U.S. - West Coast)
0044 7790 816 954 (Europe)
Email: marketing@medicilon.com
地址:上海市浦东新区川大路585号
邮编:201299
电话:+86 (21) 5859-1500(总机)
传真:+86 (21) 5859-6369
© 2023 上海AG真人国际(中国)官方官网生物医药股份有限公司 保留所有权利 沪ICP备20778367号-3
业务咨询
中国:
Email: marketing@videisimo.net
业务咨询专线:400-780-8018
(仅限服务咨询,其他事宜请拨打川沙总部电话)
川沙总部电话: +86 (21) 5859-1500
海外:
+1(626)986-9880(U.S. - West Coast)
0044 7790 816 954 (Europe)
Email:marketing@medicilon.com
蛋白质的分离纯化工作较为复杂,从细胞中提取的蛋白质或从含有蛋白质的溶液中经过沉淀、梯度离心、盐析等方法得到的蛋白质经常含有杂质,要去除这些杂质,同时又要保持蛋白质的生物学活性,如酶的催化活性,就需要根据不同的蛋白质制定出相应的策略,采用不同的方法。电泳和色谱法是比较常用的方法,尤其是色谱法,对蛋白质的处理较为温和,又可大量制备有生物学活性的纯化蛋白质,因此是目前最为广泛应用的技术方法。
蛋白能溶于水是因为其表面有亲水性氨基酸,在蛋白质的等电点处若溶液的离子强度特别高或者特别低,蛋白则倾向于从溶液中析出。硫酸铵是沉淀蛋白最常用的盐,因为它在冷的缓冲液中溶解性好,冷的缓冲液有利于保持目的蛋白的活性。硫酸铵分馏常用作试验室蛋白纯化的第一步,它可以初步粗提蛋白质,去除非蛋白成分。蛋白质在硫酸铵沉淀中较稳定,可以短期在这种状态下保存中间产物,当前蛋白质纯化多采用这种办法进行粗分离翻。在规模化生产上硫酸铵沉淀方法仍存在一些问题,硫酸铵对不锈钢器具的腐蚀性很强。其他的盐如硫酸钠不存在这种问题,但其纯化效果不如硫酸铵。除了盐析外蛋白还可以用多聚物如PEG?和防冻剂沉淀出来,PEG是一种惰性物质,同硫酸铵一样对蛋白有稳定效果,在缓慢搅拌下逐渐提高冷的蛋白溶液中的PEG浓度,蛋白沉淀可通过离心或过滤获得,蛋白可在这种状态下长期保存而不损坏。蛋白沉淀对蛋白纯化来说并不是多么好的方法,因为它只能达到几倍的纯化效果,而我们在达到目的前需要上千倍的纯化。其好处是可以把蛋白从混杂有蛋白酶和其他有害杂质的培养基及细胞裂解物中解脱出来。
虽然更换缓冲液不能提高蛋白纯度,但它却在蛋白纯化方案中起着极其重要的作用。不同的蛋白纯化方法需要不同pH及不同离子强度的缓冲液。假如你用硫酸铵将蛋白沉淀出来,毫无疑问蛋白是处在高盐环境中,需要想办法脱盐,可用的方法有利用半透膜透析,通过勤换透析液体去除盐分,此法尚可,但需几个小时,通常要过夜,也难以用予大规模纯化中。新型的设备将透析膜夹在两个板中间,板的一侧加缓冲液,另一侧加需脱盐的蛋白溶液,并在蛋白溶液一侧通过泵加压,可以使两侧溶液在数小时内达到平衡,若增加对蛋白溶液的压力,还可迫使水分和盐更多通过透析膜登录透析液达到对蛋白浓缩的目的。也有出售的脱盐柱,柱内的填料是小孔径的颗粒,蛋白分子不能登录孔内,先于高浓度盐离子从柱中流出,从而使二者分离。蛋白纯化的每一步都会造成目的蛋白的丢失,缓冲液平衡的步骤尤甚。蛋白会结合在任何它能接触的表面上,剪切力、起泡沫和离子强度的快速变化很容易让蛋白失活。
这是在所有的蛋白纯化与浓缩方法中最有效方法。基于蛋白与离子交换树脂间的相互电荷作用,通过选择不同的缓冲液,同一种蛋白既可以和阴离子交换树脂(能结合带负电荷的分子)结合,也可以和阳离子交换树脂结合。树脂所用的带电基团有四种:二乙基氨基乙基用于弱的阴离子交换树脂;羧甲基用于弱的阳离子交换树脂;季铵用于强阴离子交换树脂;甲基磺酸酯用于强阳离子交换树脂。蛋白质由氨基酸组成,氨基酸在不同的pH环境中所带总电荷不同。大多数蛋白在生理pH(pH6~8)下带负电荷,需用阴离子交换柱纯化,极端的pH下蛋白会变性失活.应尽量避免。由于在某个特定的pH下不同的蛋白所带电荷数不同,与树脂的结合力也不同,随着缓冲液中盐浓度的增加或pH的变化,蛋白按结合力的强弱被依次洗脱。在工业化生产中更多地是改变盐浓度而不是去改变pH值,因为前者更容易控制。在实验室中几乎总是用盐浓度梯度去洗脱离子交换柱,利用泵的辅助可以使流入柱的缓冲液中盐浓度平稳地上升,当离子强度能够中和蛋白的电荷时,蛋白就被从柱上洗脱下来。但在工业生产中盐浓度很难精确控制,所以常用分步洗脱而不足连续升高的盐梯度。与排阻层析相比,离子交换特异性更好,有更多的参数可以调整以获得最优的纯化效果,树脂也比较便宜。值得一提的是,即便是用最精确控制的条件,仅用离子交换单一的方法也得不到纯的蛋白,还需要其他的纯化步骤。
亲和层析基于目的蛋白与固相化的配基特异结合而滞留,其他杂蛋白会流过柱子。本方法存在的问题是:单抗非常昂贵,而且也需先纯化;单抗与目的蛋白结合力太强.要用苛刻的条件来洗脱,这会使目的蛋白失活并破坏单抗;混合物中的其他蛋白如蛋白酶也可能破坏抗体或与它们非特异结合;某些单抗也会在纯化过程中从树脂上解离下来混入产物中,也需要从终产物中去除。亲和柱通常在纯化过程的后期应用,此时标本体积已缩小,大部分的杂质已经去除。谷胱甘肽S-转移酶(Glutathione S-transferase,GST)是最常用的亲和层析纯化标签之一,带有此标签的重组蛋白可用交联谷胱甘肽的层析介质纯化,但本方法有以下缺点:首先,蛋白上的GST必须能合适地折叠,形成与谷胱甘肽结合的空间结构才能用此方法纯化;其次,GST标签多达220个氨基酸,如此大的标签可能会影响表达蛋白的可溶性,使形成包涵体,这会破坏蛋白的天然结构,难于进行结构分析,有时即便纯化后再酶切去除GST标签也不一定能解决问题。另一种可应用的亲和纯化标签是6组氨酸标签,组氨酸的咪唑侧链可亲和结合镍、锌和钴等金属离子,在中性和弱碱性条件下带组氨酸标签的目的蛋白与镍柱结合,在低pH下用咪唑竞争洗脱。组氨酸标签与GST相比有许多优点,首先,由于只有6个氨基酸,分子量很小,一般需要酶切去除:其次,可以在变性条件下纯化蛋白,在高浓度的尿素和胍中仍能保持结合力;另外6组氨酸标签无免疫原性,重组蛋白可直接用来注射动物,也不影响免疫学分析。虽然有这么多的优点,但此标签仍有不足,如目的蛋白易形成包涵体、难以溶解、稳定性差及错误折叠等。镍柱纯化时金属镍离子容易脱落漏出混入蛋白溶液,不但会通过氧化破坏目的蛋白的氨基酸侧链,而且柱子也会非特异吸附蛋白质,影响纯化效果。若目的蛋白可与某种碳水化合物特异结合,或者需要某种特殊的辅因子,可将该碳水化合物或辅因子固相化制成亲和柱,结合后目的蛋白可用高浓度的碳水化合物或辅因子洗脱。
层析蛋白是由疏水性和亲水性氨基酸组成的。疏水性氨基酸位于蛋白空间结构的中心部位,远离表面的水分子。亲水性氨基酸残基则位于蛋白表面。由于亲水性氨基酸吸引了许多的水分子,所以通常情况下整个蛋白分子被水分子包围着,疏水性氨基酸不会暴露在外。在高盐浓度的环境中蛋白的疏水性区域则会暴露并与疏水性介质表面的疏水性配基结合。不同的蛋白疏水性不同,与疏水作用力大小也不同,通过逐渐降低缓冲液中盐浓度冲洗柱子,在盐浓度很低时,蛋白恢复自然状态,疏水作用力减弱被洗脱出来。
疏水性树脂的选择性是由疏水性配基的结构决定的,常用的直链配体为烷基配体(alkyl ligands)和芳基配体(arylligands),链越长结合蛋白的能力也越强。理想树脂种类的选择应根据目的蛋白的化学性质而定,不能选择结合力太强的树脂,结合力太强的树脂会很难洗脱,所以开始时应选用中等结合力的苯基树脂探讨条件。为了使选择合适的介质更容易,Amersham Biosesciences推出了疏水作用树脂选择试剂盒,里面包括5种不同的树脂供比较。疏水层析很适合作为离子交换纯化的下一个步骤,因为疏水作用层析在高盐浓度下上样,从离子交换得到的产物不需更换缓冲液即可使用。蛋白又在低盐缓冲液中洗脱,又省去了下一步纯化前的更换缓冲液的步骤,既节约了时间,又减少了蛋白的丢失。也叫凝胶过滤或分子筛。排阻层析柱的填充颗粒是多孔的介质,柱中围绕着颗粒所能容纳的液体量叫流动相,也称无效体积。太大的蛋白不能登录颗粒的孔内,只能存在于无效体积的溶液中,将会最早从柱中洗脱出来,对这部分蛋白无纯化效果。由于各种蛋白的分子大小不同,扩散登录特定大小孔径颗粒内的能力也各异。大的蛋白分子会被先洗脱出来,分子越小,洗脱出来的越晚。为得到最佳的纯化效果,应将孔径大小选在目的蛋白能在无效体积和总柱床体积的中点附近洗脱。排阻层析有其他方法所不具备的优点,首先所能纯化的蛋白分子量范围宽,Tosoh Biosesep公司的聚合物树脂,排阻极限可达200000kD;其次,树脂微孔的形状适合分离球形的蛋白质,纯化过程中也不需要能引起蛋白变性的有机溶剂。应该注意的是某些蛋白不适合用凝胶过滤纯化,因为本技术所用树脂有轻度的亲水性,电荷密度较高的蛋白容易吸附在上面。排阻层析从不用于纯化过程的早期,因为这种方法要求标本高度浓缩,上样量只能在柱体积的1%~4%之间,柱子要细而长才能得到好的分离效果,树脂本身也比较昂贵,规模化的工业生产中不太适用。
丙烯酰胺凝胶电泳通常用来查看蛋白混合物样品的复杂程度和监测纯化效果。这种方法分离效果极好,可惜很难在不丧失精度情况下放大到制备规模,因为随着胶厚度的增加,电泳时的热效应会严重干扰蛋白的泳动。在基础研究中,有时仅需要少量的纯蛋白进行研究,如蛋白质测序等,此时电泳纯化不失为一种简便快速的好方法。丙烯酰胺凝胶电泳也是蛋白纯化过程中重要的分析工具,可以检测目的蛋白是在哪个梯度的离子交换柱盐洗脱液中;可用来判定近年来随着各学科的迅猛发展,对蛋白纯化技术的需求不断增长,已有的纯化方法被日益改进,新型的纯化方法也相继涌现。羟磷灰石是磷酸钙的结晶,由于其理化性质不够稳定,结合能力差,很难用于层析。近来来Bio-Rad公司对其进行了改进,提高了钙和磷的比例,使形成球形、多孔、性质稳定的陶瓷羟磷灰石颗粒,其带正电的钙离子和负电性的磷酸根离子可分别与蛋白的羧基及氨基结合。通过调整缓冲液的pH值,酸性及碱性氨基酸可选择性地与此树脂结合,改变缓冲液的盐浓度可将蛋白洗脱分离。资料显示,使用这种方法能使两种等电点、分子量和疏水性相同的蛋白很好分离。